OPIOID ANTAGONISTS

TRAUMATIC BRAIN INJURY

Ulrich Lanius Ph.D. & Galyn Forster M.A.
TBI injury statistics

- A leading cause of death & disability worldwide
- In China, >1/1000 people experience TBI annually
- In US >2 mill suffer a TBI w/ 500,000 hospitalizations
- Annual deaths from TBI: 50,000 US, 57,000 EU
- 12 million US & EU citizens were living w/TBI-related disability in 2006

Definition of terms:

- Mild TBI, concussion:< 30 min loss of consciousness
- Moderate TBI: 20 min - 6 hrs loss of consciousness w/ Glasgow Coma Scale (GCS) of 9 to 12
- Severe TBI: >6 hours w/GCS of 3 to 8
• Disturbance of consciousness ↓
• Intracranial pressure ↓
• Respiratory depression ↓
• Inflammatory mediators ↓
• Secondary injury ↓
• Neurological function ↑
• Nerve conduction ↑
• Neurogenesis ↑
TBI RESEARCH
OPIOID ANTAGONISTS

- Animal & human research
- Naltrexone
- Naloxone
- Nelmefene
- Case Studies
• Cats
• Spinal injury
• Naloxone
• Hypotension ↓
• Neurologic recovery ↑
• Rats
• Threefold increase in neurogenesis
• Threefold decrease in astrocytes/astroglia
• 50% decrease in oligodendrocytes
• Reduced scarring?
NALOXONE & SEIZURE ACTIVITY
YANG ET AL. 2010

- Rats
- Reduced interleukin-1 beta synthesis
- Reduced astrocyte/microglial activation
- Optimal dosage 3.84mg/kg for IL-1 beta & microglia
- Optimal dosage 5.76mg/kg for attenuation of SB 100B synthesis, astrocyte activation & and neuron apoptosis
- Later dosage adjustments to optimally reduce cognitive effects
NALMEFENE NEUROLOGICAL OUTCOME
VINK ET AL. 1990

- Rats
- Fluid percussion injury
- Nalmefene
- Single-dose 100µg/kg, i.v. at 30 min after trauma
- Intracellular free-magnesium concentration \uparrow
- Adenosine diphosphate concentration \uparrow
- Cytosolic phosphorylation potential \uparrow
- Improved bioenergetic state
- Improved long-term neurological outcome at 1 and 4 weeks
• Case studies n=2
• Improvement in functioning
• Administration long after injury
• Benefits maintained only while on medication
TENNANT & WILD 1987

CASE 1

- Female 28 yrs
- Concussion with LOC
- Normal CT and EEG
- MMSE = 18
- Naloxone .4mg
- Followed by naltrexone 100mg/day for 3 months
- MMSE = 25-27
- Amnesia ↓
- Disorientation ↓
- Headaches ↓
- Balance ↑
- STM ↑
- Lost gains when naltrexone discontinued
- Effects re-instated with continuation of naltrexone
CASE 2

- Female 24 yrs.
- MVA concussion
- Normal CT and EEG
- MMSE = 25-27
- Naltrexone 50mg/day for 3 weeks vs. placebo
- MMSE = 25-27
- Temper rages ↓
- Amnesia ↓
- Depression ↓
- Garbled speech ↓
- Maintained on 50mg of naltrexone/day
- MMSE = 30
• Male 18 yrs.
• Severe TBI
• LOC 1 month
• No response to rehabilitation
• Naltrexone
• Functional status \uparrow
• Motor function \uparrow
• Speech \uparrow
• Activities of daily living \uparrow
NALOXONE META ANALYSIS
ZHANG ET AL. 2014

- Naloxone vs. placebo
- Studies in China
- Severe TBI
- Total of N = 2332 patients
- 19 RCT’s reviewed (from total of 125)
 - 5 double blinded
 - 14 didn't report blinding
• Mortality at 18 months ↓
• Abnormal heart rate ↓
• Abnormal breathing ↓
• Intracranial pressure ↓
• Verbal & physical dysfunction ↓
• Severe disability (at 18 months) ↓
• Awakening time ↑
• GCS at 3 and 10 days ↑
NALOXONE
DOSAGE

• Chinese research
• Effective dose remains controversial
• High-dose may be more efficacious than low dose
• Short half-life
• Continuous administration of high-dose naloxone essential for clinical efficacy?
CASE STUDY
NALTREXONE

- Female 16 yrs.
- Severe TBI - MTB accident
- LOC > 30 minutes
- GCS = 5 at 30 minutes, combative
- Induced coma with Versed for transport, intubated
- Right frontal contusion on CT
- Morphine for 3 days for other injuries
- MOCA = 15/30 - 4 days post-injury
- MOCA = 18/30 - 7 days post injury
- Diffuse axonal injury diagnosed
- Discharged in confusional state 7 days post-injury
• 5mg LDN initiated 7 days after injury
• Escalating dosage to 150mg/day
• Improved symptoms but still altered consciousness and ongoing PTA
• Dosage increased to 200mg/day - no longer “like in a dream”
• PTA terminated
• Other interventions: moderately high doses of Omega-3; moderate doses of Vitamin B, C, D, E, K, zinc and melatonin
• Neurofeedback initiated 2 weeks post-injury - 200 sessions total
• Neuropsych Assessment 1 month after injury: Trails B below 1st %ile
• Return to school 2 months post-injury
CASE STUDY
NALTREXONE

- Limited course load - 3 courses
- Private tutoring in math & chemistry
- Participates in low impact physical activity, strength training
- Trails B 77th %ile at 3 months post-injury
- Joins regular classes in all 5 courses 4 months post-injury - symptom free
- Maintained for 6 months on LDN 6mg/day after 4 months of high dose naltrexone
- Rejoins regular sports 6 months post-injury
- 2nd place amateur regional ski race 6 months post-injury
- 1st place amateur regional ski race 18 months post injury
- 2nd place regional MTB championship 22 months post-injury
- Completes Grade 12 with A average
NALTREXONE
DOSAGE FOR ACUTE TBI

• Clinical experience
• High-dose more efficacious than low dose
• LDN some beneficial effects but limited
• Longer half-life than naloxone
• Minimum dosage per day 200mg (120 pounds)
• 3.6mg per kg of body weight
Based on animal research
High-dose more efficacious than low dose
Longer half-life than naltrexone
Preferred kappa receptor occupancy
More easily tolerated than naltrexone?
Overall dosing similar to naltrexone for other conditions
Female 40 years old
Severe TBI 3 years prior to psychotherapy
Damaged brainstem, cerebellum and left frontal lobe
Extensive damage to left side of mouth and back-teeth, one tooth extracted
Broke one ankle in the fall and a second ankle shortly after the original fall
PTSD w/intense phobia of stairs and curbs
Agoraphobic due to fear of encountering former abusive boss & work-mates in public
CASE STUDY 3 YEARS AFTER sTBI

• Unable to remember any details of daily schedule
• Unable to recall faces, names or even having encountered people the previous day
• No sense of the passage of time
• Reality had a “puffy, dreamy, nerf-like” quality
• Bizarre-unregulated thoughts & mental-noise
• “Nerve pain” when she put weight on her feet getting out of bed in the morning
• “Phantom” pain & numbness in L hand & arm
• Nightmares
• Somatization of imagined future & past events
CASE STUDY 3 YEARS AFTER sTBI

Initiated LDN with 12 mg in the am
 • Started too high due to dosing confusion
 • Mental fog & headache resulted
 • Immediately less emotional reactivity

⇓ To 5 mg (0.06 mg/kg/b/w) 2 or 3 x daily
 • Mental fog & headache immediately ⇦
 • Felt more like “normal, pre-accident self”
 • After 6 hours she could feel LDN wearing off, and her functioning ⇦ to her pre-LDN baseline
CASE STUDY 3 YEARS AFTER sTBI

LDN 4

- All symptoms improved, except the inability to feel the passage of time
- Remembering her daily schedule ↑
- Recalling recent encounters, faces & names ↑
- “Puffy, nerf-like" quality to reality ↓
- Bizarre thoughts and inner-noise in her head ↓
- "Nerve pain" placing feet on ground in the am ↓
- "Phantom" pain & numbness in L hand and arm ↓
- Nightmares ↓
- Somatization of events, past or imagined ↓
- Phobia of stairs and curbs ↓
 - Resumed limited stairs use prior to EMDR Therapy
- EMDR trauma therapy more easily tolerated with LDN
CASE STUDY 3 YEARS AFTER sTBI

LDN Mechanisms of action:
- Regulation of neurobiology underlying dissociation
- Neuroplasticity & neuro-regeneration possibly supported
- Reduction of neuro-inflammation
- Why the dramatic memory improvement?
 - Hypervigilance/flight-fight↓, anxiety↓, dissociation↓, neuroregulation↑ = memory↑

- Secured a high level managerial job with the state.
- Has used LDN regularly since starting early in 2016.
- Currently she takes 3.5 mg 2 x daily, & strategically.
ADVERSE EFFECTS
MANAGEMENT

• If adverse effects - always try lower dose first
• Occasionally higher doses are better but can be problematic
• Sensitive individuals - start with 0.5mg dose
• Daytime dosing if sleep problems
• Patient-driven dosing - collaborate & experiment
• Patient may choose to reduce dosage if too “edgy”
• Availability of different dosages, e.g., 0.2mg, 0.5mg, 1mg, 2mg, etc.
OPIOID ANTAGONIST TBI TREATMENT

QUESTIONS

• Optimal timing for initiation of treatment?
• Long-acting vs. fast acting?
• Naloxone vs. naltrexone vs. nalmefene?
• Contraindications?
• Use in conjunction with other interventions?
• Optimal dosage?
• Optimal length of treatment?
• Can benefits be maintained if introduced after delay?
CLINICAL EFFECTS
INCREASED FUNCTIONING

- Clarity ↑
- STM ↑
- Working memory ↑
- Executive functioning ↑
- Attention/Concentration ↑
- Affective regulation/self-regulation ↑
- Balance ↑
CLINICAL EFFECTS
DECREASED SYMPTOMS

- Brain fog ↓
- Amnesia ↓
- Anger, irritability, rage ↓
- Hypervigilance and anxiety ↓
- Photosensitivity ↓
- Noise sensitivity ↓
- Headaches ↓
- Pain ↓
- Numbness and phantom pain ↓
- Bizarre thoughts and constant “mental noise”
- Nightmares ↓
This presentation was created by the Author
for the LDN 2017 Conference.
Copyright remains the property of the Author and this presentation can't be
shared or altered without the written permission of the Author.