Inflammatory Bowel Disease

Leonard Weinstock, MD
Specialists in Gastroenterology
Associate Professor of Clinical Medicine
Washington University School of Medicine
Disclosures

• Speakers Bureau
 – Salix, Actavis, Romark
Forces Leading to IBD

- Risk Genes
- Bacterial Antigens
- Environmental Triggers
- Immune Response
<table>
<thead>
<tr>
<th></th>
<th>Gob</th>
<th>EC</th>
<th>Gob</th>
<th>Gob</th>
<th>Gob</th>
<th>Gob</th>
<th>Gob</th>
<th>EC</th>
<th>mucus layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gob</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Goblet</td>
</tr>
<tr>
<td>EC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>zonulin</td>
</tr>
<tr>
<td>EC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>occludin</td>
</tr>
<tr>
<td>PC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enterochromaffin</td>
</tr>
<tr>
<td>PC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Paneth cells</td>
</tr>
<tr>
<td>PC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>submucosal</td>
</tr>
<tr>
<td>PC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>plexus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mesenteric</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>plexus</td>
</tr>
</tbody>
</table>

Diagram:
- Bacteria
- Goblet
- Mucus layer
- Zonulin
- Occludin
- Enterochromaffin
- Paneth cells
- Submucosal plexus
- Mesenteric plexus
<table>
<thead>
<tr>
<th>Dysbiosis</th>
<th>invasive bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gob</td>
<td>Abnormal mucus layer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gob</th>
<th>Gob</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>EC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EC</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>PC</td>
</tr>
</tbody>
</table>

Increased vascular permeability
Phase 1: Pre-disease Stage – Triggers Impair Barrier Function and allow Bacterial Translocation

- Genetic factors
 - Antimicrobial factors
 - Autophagy
 - Handling of bacteria
 - Chemokines
 - Cytokines

- Environmental factors
 - Microorganisms
 - Diet
 - Infections
 - Stress
 - NAIDs
 - Appendectomy
 - Smoking
 - Antibiotics
Phase 2: Acute Intestinal Inflammation

Translocation of bacteria *

Immune activation *

* Important for LDN
Phase 3: Chronic Inflammation

• Failure of regulatory mechanisms
 – Loss of Treg cell *

• Activation of Effector Cells
 – Macrophages
 – Effector T cells *

* Important for LDN
Phase 4: Tissue Destruction and Complications

• Deep ulceration
 – Fibrosis leading to Stenosis
 – Fistula
 – Abscess

• Chronic inflammation
 – Leading to Cancer

• Extra-intestinal manifestations
 – Autoimmune
Overview of IBD Therapy

• “Suppress inflammation”
• Alter functions & abilities of WBCs
• Reduce prostaglandins & free radicals
• Alter microbiome & mucosal immunity
 — Antibiotics, Probiotics, Dietary, IgG, FMT
• Role LDN: improve innate regulation of immunity, reduce inflammation, and improve vascular integrity
Drug-induced Infection & Mortality in IBD

6273 CD pts followed 5 yrs
3420 had infliximab
2853 had other-Rx-only

Mortality increased with:
Prednisone, narcotic use, and age

Infections increased with:
Moderate-to-severe disease activity, narcotic use, prednisone, infliximab
Prednisone

MOA

- Suppress neutrophils activity
- Alter vascular permeability
- Decrease macrocyte Fx
- Altered Arachidonic acids
- Suppress circadian IL-6

Protection

- Vitamin D and Ca^{++}
- Alternative steroids
 - Budesonide
 - Topical Rx

Adverse Events

- Mood swings
- Insomnia
- Edema
- Hypertension
- Hyperglycemia
- Weight gain
- Thin skin, bruising
- Increased risk of infections
- Adrenal insufficiency
- Glaucoma, Cataracts
- Osteoporosis
5-ASA

MOA

- Inhibit 5-lipoxygenase (and Leukotrienes)
- Free-radicle scavenger (blocks bad effects of neutrophils)

Protection

- Check creatinine
- pH & distribution
- Alternative forms
 - Local

Adverse Events

- Diarrhea
- Hair loss
- Headache
- Hypersensitivity
 - Fever
 - Bone marrow
 - Pancreatitis
 - Rash
 - Renal failure
Thiopurines

MOA
- Block lymphocyte proliferation, activation, & effector mechanisms

Protection
- Check TPMT
- Correct dosing
- Vaccines
- Avoid infections
- Check CBC/LFT
- Check drug levels

Adverse Events
- Pancreatitis
- Leukopenia
- Anemia
- Hepatotoxicity
- Infections
- Lymphoma
- Skin cancer
Anti-TNF-α therapy

• **MOA**
 - Neutralizes TNF-α released by T-cells
 - Splits lymphocytes via complement fixation or cytotoxicity

• **Protection**
 - Vaccination:
 • dead viruses
 • Wait 2 mo after live viruses
 - Exclude Tb & his top.

• **Adverse Events**
 - Infusion reactions
 - Injection pain
 - Increased risk of infections
 - Antibodies
 • Lupus
 • Arthritis
 • Antibodies vs. drug
 - Lymphoma
Anti-TNF-α – CD Rx: Infliximab

Infliximab - 70 pt drop in CDIA at wk 30

<table>
<thead>
<tr>
<th></th>
<th>placebo</th>
<th>5 mg/kg</th>
<th>10 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>39%</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph showing the percentage of patients (pt) with a 70 pt drop in CDIA at wk 30 for placebo, 5 mg/kg, and 10 mg/kg Infliximab.

- **46%** for 10 mg/kg
- **39%** for 5 mg/kg
- **25%** for placebo
Anti-Integrin therapy

MOA

- Inhibits T-cell movement into inflamed GI tissue
- Binds to integrin blocking MadCam-1 cell adhesion on gut endothelial cells

Adverse Events

- Potential increased risk of infection
- Rare malignancy – similar to plc

Protection

- Observe
Anti-Integrin Rx - CD: Vedolizumab

<table>
<thead>
<tr>
<th></th>
<th>Vedolizumab (52 wk data)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response = 100 pt drop; Remission <150</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>44%</td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30%</td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>22%</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>Vedo</td>
</tr>
<tr>
<td>Response</td>
<td>Remission</td>
</tr>
<tr>
<td>placebo</td>
<td>Vedo</td>
</tr>
<tr>
<td>50%</td>
<td>39%</td>
</tr>
<tr>
<td>30%</td>
<td>39%</td>
</tr>
<tr>
<td>22%</td>
<td>39%</td>
</tr>
<tr>
<td>15%</td>
<td>39%</td>
</tr>
<tr>
<td>10%</td>
<td>39%</td>
</tr>
<tr>
<td>5%</td>
<td>39%</td>
</tr>
<tr>
<td>0%</td>
<td>39%</td>
</tr>
</tbody>
</table>
Anti-Interleukin Therapy: Ustikamab

MOA

- Binds to IL-12 and -23 preventing immune cell differentiation, proliferations, and activation

Protection

- Dermatology surveillance

Adverse Events

- Increased risk of infection
- Skin malignancy
Anti-Interleukin Therapy:
Ustikamab (N=741 and 627, 100 pt drop)

<table>
<thead>
<tr>
<th></th>
<th>TNF Ab Failures</th>
<th>TNF Ab Naïve</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td></td>
<td>56%</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>34%</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>29%</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>21%</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>placebo</td>
<td>placebo</td>
</tr>
<tr>
<td></td>
<td>ustikamab</td>
<td>ustikimab</td>
</tr>
</tbody>
</table>
Herbal Rx in UC

14 randomized controlled trials

- Aloe vera gel, wheat grass juice, Andrographis paniculata extract (HMPL-004) and topical Xilei-san superior to plc in inducing remission or response
- Curcumin superior to plc in maintaining remission
- Boswellia serrata and Plantago ovata effective as mesalazine
- Evening primrose oil - similar relapse rates as omega-3 fatty acids
Probiotics

MOA

- Improve immunity

Examples

- VSL#3 and S. boulardii for UC
- E. coli Nissele for CD

Adverse Events

- Bloating
- Constipation
- Diarrhea
- Cost
- Infection of central lines
- Sepsis in immuno-compromised pts
Anti-Inflammatory Diets

Specific examples

- Specific carbohydrate diet (SCD)
- Gluten free diet (GFD)
- GAPS (Gut and Psychology Syndrome) diet
- Dr. Weil’s diet
Vitamin D

• Always use in setting of steroid use
• Vit D as an anti-inflammatory agent
Immunoglobulins

- Serum bovine immunoglobulins
- Purified from bovine blood
- 25 yr use in early weaned piglets have reduced infections and poor growth
- Introduced in 2013 for Rx enteropathy in man
Immunoglobulins: SBI
Potential LDN MOA in IBD

- Regulate cell growth
- Decrease inflammation
- Decrease permeability
- Stabilize Toll-like receptors
 - Decrease microglia activation
 - Decrease cytokine release
- Shift from TH2 to TH1
- Improve GI motility
LDN effect

Endorphins & receptors lead to decreased T- and B-cell activity & less permeability
LDN MOA – Toll receptors

- Endothelial receptors – possible MOA for IBD
 - Toll receptor allows bacterial translocation – exacerbated by exogenous opioids
 - LDN may stabilize receptor and decrease bacterial translocation

Methionine enkephalin: role in immunoregulation

- MENK binds to opioid receptors on immune and cancer cells.
- Binding site: CD4+Foxp3+ regulatory T cells (Tregs) which suppressing immune system to keep balanced immunity
- Tregs reveal a relationship between the endocrine and immune systems

Zhao. Int Immunopharmacol 2016;37:59-64.
Crohn’s disease and LDN

Open label studies
• Weinstock. J Clin Gastroenterol 2014;48:742

Double blind studies
• Smith. Dig Dis Sci 2011; 56:2088-97
Crohn’s disease – RCT #1

• LDN as adjunctive therapy in adults
• Biologic therapy was an exclusion
• 88% of LDN (N=18) had 70-point decrease in CDAI scores vs. 40% of control (N=16)
• After 12 wks, 78% of LDN had response in CD endoscopy index severity score vs. 28% controls
• 33% of LDN had endoscopic remission vs. 8% controls

Crohn’s disease – RCT #2

• LDN as sole therapy in 14 children
• LDN (0.1 mg/kg) vs. placebo for 8 wks
• CDAI: 34±3 decreased to 22±4 (P=0.005)
• 25% went into remission
• No serious AE
Crohn’s disease and LDN

- 33 adults - mod-severe CD
- Failing 5-ASA followed by 6-MP and/or IFX
- LDN 4.5 mg: 40 ± 43 wks (max 200 wks)
- 5 withdrew - AE (mild-moderate)
- Positive clinical response in 15/33 pts
- 11 of the 15 responders: C-scope before and after Rx: 8 complete, 1 partial & 2 no healing

Crohn’s Disease: LDN Rx

- 40 y.o. WF s/p total colectomy; intestinal recurrence 4 yrs later; failing infliximab: diarrhea & fatigue
- LDN 4.5 mg added; endo & clin remission in 2 mo
- Remission 6 yrs
CD and MS: LDN Rx

- CRC screening of severe MS pt – ileitis w/o sx
- 2 weeks: MS clinical benefit
- 1 year: MS clinical benefit; ileal ulcers healed
Ulcerative Colitis: LDN Rx

- Pt failing Remicade – high risk of colectomy
- LDN added to biologic Rx - remission 7 yrs
Ulcerative colitis – St. Louis

• Open label study: 4.5 mg LDN in moderate to severe UC (N=12)
• Failing 5-ASA followed by 6-MP and/or IFX
• LDN Rx: 46 ± 75 wks (max 270 wks)
• 1 withdrew d/t insomnia
• Positive clinical response in 6/12 pts
• 2 of 6 responders: C-scope before and after Rx
 • 2 complete healing
UC LDN Rx: Additional Cases

<table>
<thead>
<tr>
<th>Pt #</th>
<th>Dur. (1/16)</th>
<th>Response</th>
<th>Type Rx</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.5 mo</td>
<td>Marked</td>
<td>Mono</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10 mo</td>
<td>Marked</td>
<td>Mono</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>11 mo</td>
<td>Moderate</td>
<td>Combo</td>
<td>5-ASA</td>
</tr>
<tr>
<td>4</td>
<td>19 mo</td>
<td>Moderate</td>
<td>Combo</td>
<td>EntyVio, MTX, d/c pred</td>
</tr>
<tr>
<td>5</td>
<td>1.5 mo</td>
<td>Mild-Mod</td>
<td>Mono</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2 mo</td>
<td>Mild</td>
<td>Mono</td>
<td>Added other Rx</td>
</tr>
<tr>
<td>7</td>
<td>1 mo</td>
<td>Failed</td>
<td>Mono</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2 mo</td>
<td>Failed</td>
<td>Combo</td>
<td>IFX, MTX</td>
</tr>
<tr>
<td>9</td>
<td>6 mo</td>
<td>Failed</td>
<td>Combo</td>
<td>5-ASA</td>
</tr>
</tbody>
</table>
LDN Rx for IBD

• Low toxicity, low cost
• Additive owing to different MOA
• Safe/effective with biologics for long time
• Can work with 6MP
• Role as monotherapy to be determined
• RCT important
 - High-placebo Sx response
 - Need endoscopic outcomes