Low Dose Naltrexone in Treatment of Obesity and Weight Loss

by Andrey Lev-Weissberg, MD FACP
Professor of Medicine University of Illinois College of Medicine
OBJECTIVES

● LDN success story as immunomodulator
● Learning from clinical practice with the use of low-toxicity pharmaceuticals that have wide range of applications
● Discuss neurobiologic significance of endorphins in homeostasis of weight
Discussion metabolic syndrome as proinflammatory state
● Discuss possible application of LDN in management of obesity from above two perspectives
● Provide a practical approach to using LDN using clinical vignettes
BASIC TENETS OF LDN:

- LDN increases natural endorphins from pituitary
- Likely increases dopamine
- Interaction between endorphins and dopamine is complex.
- It is likely that LDN modulates natural activity and produces “healthy” levels
- Low-Dose effect can have a “tonic” influence
- Cellular effects are produced by dopamine and endorphins
LDN and sleep

“usual doses” of naltrexone:

- Sleep time and sleep latency - unchanged
- Increased time in stage 2
- Decreased time in stage 3
- REM time decreased (~50%)
- REM latency increased
- WASO (wake time after 1st sleep onset) - increased
Heavenly Virtue, Cardinal Sin
Chastity, Lust
Temperance, Gluttony
Charity, Greed
Diligence, Sloth
Patience, Wrath
Kindness, Envy
Humility, Pride
Cellular Level

- Involved in satiety
- Dopamine and reward behaviors
- Opiates and pleasure behaviors
- Dopamine and Endorphins have immunomodulatory effects on T cells
- Effects on sleep
- Effects on mood, well-being
LDN is a successful approach

- Low incidence of side effects
- Physiologic approach, takes into account natural sleep wake cycle
- Restores the natural state of affairs, targets the master gland
Opiate Delta Receptor

Delta receptor (DOP)

- named after vas deferens tissue
- located in the brain
- mediates
 - analgesia
 - antidepressant
 - convulsant
 - physical dependence
Nociceptin Receptor: OLR-1

Nociceptin

- Endogenous antagonist of dopamine transport that may act either directly on dopamine or by inhibiting GABA to affect dopamine levels.
- Within the central nervous system its action can be either similar or opposite to those of opioids depending on their location.
- Controls a wide range of biological functions
 - Nociception
 - Food intake
 - Memory processes
 - Cardiovascular and renal functions
 - Locomotor activity to gastrointestinal motility
 - Anxiety to the control of
 - Neurotransmitter release at peripheral and central sites.\(^5\)
Kappa Receptor

- Locations:
 - Brain
 - hypothalamus
 - periaqueductal gray
 - claustrum
 - spinal cord
 - substantia gelatinosa
 - peripheral sensory neurons
LDN in weight loss

59 yo woman with history of morbid obesity, lymphedema, HTN, hyperlipidemia, chronic cough due to pneumonitis

- diagnosed with inflammatory arthritis
- decided to seek weight loss counseling
- treated with behavioral modification, dietary plan, LDN
Case #1:

- 3 months into treatment sustained 35 lb weight loss
- Reported feeling adherent with dietary plan
- Reduction of inflammatory markers, decreased need for corticosteroids
- Improvement in depression
50 yo woman with history of HTN, hypothyroidism, GAD, depression presented frustrated that she was unable to lose weight in the weight loss clinic. She wanted surgery

- Treated with diet and LDN only
- Was initially unable to exercise due to bilateral knee pain due to OA
- Lost 20 lb in 1 month and started to exercise
Endogenous Opiates and Dopamine

Opiates
- Leukenkephalins
- Metenkephalins
- Dynorphins
- Endorphins
- Morphine

Dopamine
OTHER DRUGS FOR WEIGHT LOSS

FDA Approved

- Lorcaserin (Belviq)
- QSymia (Topamax/Phentermine)

Non-FDA Approved

- Buproprion Wellbutrin
- Naltrexone
- GLP-1 agonists
Low Toxicity Pharmaceuticals in Clinical Practice

- LDN research trust as a repository for observational findings
 - Individual case-reports
 - Clinical case series
 - Case-control studies
 - RCTs

